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AN APPROXIMATE METHOD FOR DETERMINING STRESSES IN AN ELASTIC 
ANISOTROPIC PLATE NEAR AN OPENING WHICH IS ALMOST CIRCULAR 

S. G. Lekhnitskiy 

(Saratov) 

The two-dimensional problem of the theory of 
elasticity for an anisotropic plate with an opening 
has only been solved for the case of an elliptical 
or circular opening. All other shapes of openings, 
including many of practical importance, as yet have 
not been sufficiently investigated.  In this paper 
an approximate method is suggested for solving the 
two-dimensional problem for an infinite, 
anisotropic plate with an almost circular opening. 
The method is based on the introduction of a small 

\  parameter (characterizing the deviation of the 
opening from circular), the highest powers of which 
(beginning, for example, with the third or fourth) 
are discarded during the investigation.  The 

• problem is reduced to the well-known one concerning 
the equilibrium of an anisotropic plate with a 
circular opening.  Chief attention is given to an 
opening having four axes of symmetry (with the 
proper parameter selection it can differ only 
slightly from a square with rounded corners). 
Approximate solutions for a plate with such an 
opening are derived for both the general case of 
loading and for two particular cases when the plate 
is orthotropic and is deformed by:  1) tensile stresses 
and 2) bending moments in the middle plane. 

1.  General equations for the two-dimensional problem of the 

theory of elasticity of an anisotropic body.  In this and the 

following paragraphs we shall use the common designations for 

component stresses, projections of displacement, elastic constants, 

and quantities related to them [1, 2], 

I 



We shall recall the basic equations of a two-dimensional 

problem for an anisotropic body. Let an elastic homogeneous 

anisctropic body be found in a generalized two-dimensional stressed 

state or in a state of two-dimensional deformation relative to the 

plane xy.  It is assumed that three-dimensional forces are absent, 

deformations are small, and the material follows a generalized 

Hooke law, with which at each point there is a plane of elastic 

symmetry parallel to the xy plane. Then, as is known, the component 

stresses which are parallel to this plane are expressed through 

stress function F(x, y): 

_d*F               ii*F i"F 
e,; - -rrj-,    av — ■gi,-,    tux g-   • (1.1) dy*'    »      dx2 '      ux oxdy 

1 
The general expression for the stress function has the form 

F=2Ro[Fl(z\) + Fa(z'J] (1.2) 

where Re is  the designation for the real part  of the  complex 

expression; F,   and F„ are arbitrary analytic functions of the complex 

variables;   z'   = x + u,y and z*   = x + u?y, while u-,   and u2  are complex 

parameters,  i.e.,  roots  of equation 

?n t*4 — 2,8ia}*» 4- (2?ia + ?««) j*a — 2ßaat* +ßM «0 . (1.3) 

In the last equation $.. = a., for a generalized two-dimensional 

stressed state or 3... = a.. - a. ^a.^/a^ for a two-dimensional 

deformation (i. j = 1, 2, 6; a., are the elastic constants of the 

equations expressing the generalized Hooke law ). 

Let us introduce the new parameters: 

1  1 — i ji, '  3  1 — i nt 
y ' \ J. . -t / 

Here A, and ,\2 are real or complex numbers, in absolute value 

less than unity (or, at least, equal to 1).  Instead of the complex 

variables z, and z~ and functions F, and F2, It is convenient to 

introduce 

'See [1], pages 16, 27, 31, 3^ (in our book variables z, 
designated by z, and z2, respectively). 

f 

and z2 
are der'   ' "'  '     - .., ..  .,.. --~ -. > -     - 
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zx =o s-r/.2 z,   Zj=az + /.,z,       z — x + iy,   z**>x — iy (1.5) 

(l.C) 

Then instead of (1.2) we shall have 

/?s=2Ro[01(z1) + 0J(zJ)]. (1.7) 

Designating 

do- 
*iW-(l+Xi)—i. O^zj) ~5T (i-1,2) (1.8) 

we shall derive the following general expressions: 

jg - 2 Re [O, (zj + O, (*,)],    f£ = 2 Re [H Ot fa) + n, O, fa)] 

ox *= 2 Ro 04« (1 + X,) O'j (z,) +14* (1 +\) O; fa)J 
a„ -2 Re [(1 + XJ d>x' (2!)+ (1 +X.) «V Wl 

x„ 2 Re ftix (1 + X,) O'i fa) + h (1 + *.) <&'» («•)] 

(1.9) 

(1.10) 

Knowing how the component stresses are expressed, it is easy to 

find from the equations of tht- generalized Hocke law (by integration) 

the general expressions for the components of the displacement. 

They have the form: 

u = 2 Ro fa Ol (z,) + pt ®a fa)l — • V + "o 
v = 2 Re [ft (Di fa) + ft $» (22)] + <° * + »• 

(1.11) 

Here 

/>i - .3n!*i2 + ?Iü - ?16 h.     ?i = .8l2lii + ~-p2«;      (« = l,2) (1.12) 

the integration constants which characterize "rigid displacements" 

in the plane parallel to the xy plane are designated by 00, un, and 

V 
In studying the stressed state of a plate with an opening, 

of greatest interest is. the stress oQ  near the opening on the 

small areas normal to its contour.  It is determined by formula 

7TD-::T-23-567-69 3 



30 = ax cos* («, y) + au cos» (», a-) — 2 xxu cos («, a:) cos («, y) (1.13) 

E>-""essing the cosines of angles, formed by the normal n to the 

contour of the opening with the coordinate axes, through derivatives 

of the coordinates of contour points x and y along its arc s and 

using formula (1.10), we derive 

5,=2nc[(i~>.j(^-ltlJ)s<i>'i(Si)+(i + xJ)(^-,ag)Vw]    a.") 

Let the components of internal forces X„ and Y. be given on the * n     n 
contour of the region occupied by the body (first basic problem). 

We shall take counterclockwise stress as positive. Then boundary 

conditions will have the form: 
3 

£■-Jr.A+o,.  !£—$*.*+*•        (1.15) 

■-.re of the contour s is calculated from a certain point on 
the contour, which is taken as the initial point; c, and Cp are 
integration constants wh3 oh can be assumed to be arbitrary in the case 

of a simply connected region. Considering (1.9), we shall write the 

boundary conditions as: 

2 Re [<&! (2l) + O, (a,)] = j Yn ds + c, 

(1.16) 
2 Ro [|ia <Dj (Zj) + |*j Oj (z3)] = — ^ X„ ds -f- ca 

The two-dimensional problem is reduced to a determination of 

two functions {JzJ and «JuCzp) in the region of body S, which 

satisfy (at prescribed internal forces) conditions (1.16), do not 

have singularities within region S, and give single-valued 

displacements and stresses. In  other words, these functions must be 
determined in regions S, and S~ obtained fron: S by affine 

transformation.1  Naturally, a solution found for a plate can be 

transferred to the case of two-dimensional deformation. 

'See [1], pages 35-38. 
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2.  An approximate method of solving a two-dimensional problem 

for an Infinite plane with a notch. Let the region of the body be 

an infinite plane with a notch in the form of a figure which closely 

resembles a circle with radius a. We shall give the equation for 

the contour of the notch the following form: 

r N i 
««aj^cosö + 8 2(«ncos«5> + pnsinn0)| 

r N 

y — a[ainb + * }](--ansinn& + ßncosrtö)J 
x (2.1) 

where e is the small parameter and a and 0 are constants; during 

one complete passage along the contour 8 changes from 0 to 2-n. 
When e = 0 we obtain the equation of a circle.  Finding a precise 

solution for an anisotropic plate with an opening bounded by a 
contour in the form of (2.1) involves considerable difficulties and 

has not, as yet, been accomplished. However, making use of the fact 

that e is small, it is comparatively easy to find an approximate 

solution, considering this quantity as the small parameter.  The 

"small parameter method" has been used by many authors to construct 

approximate solutions for various problems of the theory of 

elasticity (for example, G. Yu. Dzhanelidze, N. V. Zvolinskiy, 

A. I. Lur'ye, D. Yu. Panov, and P. M. Riz).1 

The function which maps conformally the exterior of a unit 

circle found in the plane of complex variable C = pe  on an infinite 

region with notch (2.1) has the form: 

z = «> (C) = a [C + s o (C)] (2.2) 

Here 

?(C) = 2>«-HWn (2.3) 

1A  brief survey of works of this nature performed before 19^8 
and other related literature can be found in reference [5] 
(pages 182-190). 
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Branch points are determined from equation 

*    l + 8«p'(C)»0; (2.4) 

they must all be within the unit circle or inside the notch on 

plane z; otherwise the mapping will net be one-to-one. This imposes 

certain conditions (bounds) on the quantities of coefficients a , 

ß , and parameter e; we consider them fulfilled. 

Passing to plane c, we replace z and z in the arguments of 

functions *, and $? by co and w.  It is easy to see by simple checking 

that function 

<M«i)-<M»W+ *i»(§] (2.5) 

satisfies equation 

j,?fl$—rs$M (2.6) 

(in which X,  and c are considered independent variables), or, in 

greater detail, equation 

>u[l + e?WI^-[l+e?'(C)]^--0 (2.7)        I 

0i If we take p and a = e  for the independent variables, 

equation (2.6)-(2.7) assumes the form 

[•'(Q-^ßl^-I^W + ^^T-B1--0 (2-8) 

We shall seek an expression for $, in the form of a power 
series of e: 

«I», = «l»w + t «I»„+ «'<!»„-r ... (2.9) 

where 0,. does not depend on e.  Substituting (2.9) into equation 

(2.7) and equating to zero terms which do not depend on G and 

coefficients at various powers of e, we derive an infinite system 

of recurrent equations: 

F'w-;;?-23-367-69 



M»tt 

^=0 

3<I>„.      M>, i. i     ,„>M>1 A-I   n (2.10) 

>7T " if+}>1 '•'(;) "^r- -? Q - V=° «*-li2A~) 

Integrating successively these equations in partial derivative?, 

beginning with the first, we obtain: 

©u - /«(C + >./C) + [<? (Q + Ä, ? (C)] A«' (C + K C) (2 B 1 x j 
<D» - Aa(C + *i C) + [9 (C) + X, ? (Cj] /„' (C + fc»C) + 

+ ^!?(C) + >u?(Clm.(C + >.lC) 

etc., where the quantities f,. are arbitrary analytic functions of 

the argument C + *TC> and the derivatives of these functions 
throughout the argument are designated by primes.  Consequently: 

®i - A. + • [/» + (<? + H ?) /'iol + ea [A. + (? + >-i ?) fix + 

+ 2T (? + *i ?)a/.»"l +• • • + •* [At + (? +>^i)/',, *_,+ (2.12) 

+ 4l <<? + *• ?)S/i".*- + • • • + FT (? + >>i ?)A' Ao<*>] + • • • 

Here, for the sake of brevity, we omit argument C + X,t; of 

functions f i.' and arguments z,  and C of functions <J> and $. 

A fully analogous expression is also obtained for 0?, rep]icing 

the first subscripts 1 in (2.12) with 2 anc". A, with Xp. We shall 

note that expression (2.12) is an expansion in power series of a 

function depending on parameter e: 

<l>.(*i)-A(~:s)- '' <c + }^+s Ü® + *»*®1:e)        (2• 13) 

When argument £ passes along the contour of the unit circle, 

argument 5, = ? + A .If passes along the contour of a "unit ellipse" 

obtained from the circle by affine transformation, while argument 

C2 = £ + Xp"c passes along the contour of another "unit ellipse" 

which corresponds to parameter Xp.  Consequently, the regions of 

variation in functions f^U^ and f2k^2^ are infinite Planes with 

??D-;-iT-23-367-69 7 



notches in the form of "unit ellipses" and the problem is reduced 

to determining these functions based on the prescribed boundary 

conditions on the contours of the notches, in other words, to a 

well-known problem. 

Let us examine an infinite anlsotropic plate with an opening 

whose contour is determined by equation (2.1). We shall assume that 

internal forces X and Y are distributed along the edge of the 

opening, their principal vector being zero.* Obviously X and Y 

will be periodic functions of 9. Assuming that they can be expanded 

in a Fourier series, we, under the limitation taken, derive the 

integrals which go into the boundary conditions (1.16) in the form 

of Fourier series. Let us assume that the forces also depend on 

parameter e and can be expanded into an e power series.  Integrating 

them along an arc of the notch's contour, we derive: 

s no 

j }'„ ds + d = V, s* [ät0 + VJ (akm a«" + o*m 3-")] 

x no 

- j Xn ds + c,- VJ j* f fo, + 2 (?*m »m. + F*m or«)] 
U A-0    *• m— I 

(2.14) 

Here a.  and 0.  are known coefficients; o.  and 0.  are 

conjugate quantities; o. Q and 3kQ are constants which can be 

considered arbitrary. 

In this case, functions $, and $„ will be holomorphic and 

unique2 in their regions S, and Sp. Substituting their boundary 

values into (1.16) and equating coefficients at identical powers of 

e in the left and right sides, we derive an infinite series of pairs 

of conditions, each of which corresponds to a certain power e. 

We shall write them in abbreviated form, omitting the boundary 

values of the arguments 

C-«,   C = |,.C1 = c4A,  C.-0+^.'j (2.15) 

This limitation is not essential, but we assume it in order not to 
write out elementary, but very cumbersome expressions. 

2See [1], page 37. 
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m*-*mm i »I'.JI. MWUM». 

we nave 

A« + /» + fu + In» ■* «*» + 2 (*•» °m + «wi o~m) 
m«»J 

A* +/2t+ (? + >-,?) A'.*-i +(? + *,?) A. *-i+ ... + jy(? + Xlf)*/]J + 
< — - CO -■ 

h ft* + Pifn +•*, (9 + >u ?) A. *-i +!»,(? + >.,?) /j. 4_, +.... 

■ • •"'• + H (? + >??)*/to' + jn (? + ^ ?)*/# f oonj. quantity, 
09 ■    .    ,    . 

O?*o+2^*m,'m+f'*",0",")     (A-l.2,3,...) 
m— 1 

This problem was reduced to the problem concerning the elastic 
equilibrium of an anisotropic plate with a circular opening. Its 

solution is known. Functions fivC?}) and f2k^2^» wnicn correspond 
to the case when forces are applied to the edge of the opening and 

their principal vector is equal to zero, have the form:1 

V 
(2.16) 

On the  contour of the opening 

CO CO , 

A* - 4*o 4- 2 Akm 5"'"'        /s* = **• + 2 Bkm °"m • (2.17) 
m—1 

Substituting values (2.17) into the first pair of boundary 

conditions (k = 0). we find coefficients an and Bn easily (Ann, ' om     Um     v       UU' 
B00 remain arbitrary and do not influence- the distribution of stresses). 

See our work [1], page 90 (the designations which we use here 
differ somewhat from the designations in the referenced work).  If the 
principal vector of forces X and Y does not equal zero, expressions 

(2.14) will contain components in the form of A In a; according to 
this, logarithmic terms with undetermined coefficients must be added 
to functions (2.16). 

F7D-KT-23-367-69 9 



Derivatives from the found functions f,n and fpQ multiplied, 

respectively, by <j> + A,J and <J> + X^ enter into the second pair of 

boundary conditions (k * 1). These derivatives will contain both 

negative and positive powers of a.    Substituting boundary conditions 

f,, and fp-, into conditions corresponding to k = 1, we find A, and 

B, by a comparison of coefficients in the left and right sides; 

they will be expressed through ö", , üF, and through AQ , BQ found 

earlier. Functions f,Q, f20, f-,-,, and fp, determine the solution 

to the problem in the first approximation. Desiring to obtain a 

second approximation, we keep two powers of e in the expressions for 

<2>, and $p. Functions f,2 and f22 are determined from the third pair 

of boundary conditions corresponding to k * 2;  their coefficients 

are expressed through A-, B, 

through ä2m and S^. 
Om- 

Alm» and Blm **ound earlier and 

Proceeding this way, we can construct (at; least formally) any 

approximation. Let us mention here that we are not studying the 

question of the convergence of a process of successive approximations, 

bu; are limiting ourselves to particular cases by the second and 

third approximations. It also remains unclear what the highest 

value of e is which can still be considered small in each particular 

case of opening. A comparison of the numerical results found in 

the second and third approximations furnishes a basis for concluding 

that thes? approximations are sufficiently accurate for practical 

use even when the parameter e is not very small in comparison with 

unity. 

In a perfectly analogous manner we can construct approximate 

solutions for an infinite plate with an opening closely resembling 

elliptical, the equation of whose contour has the form: 

: = „f, = ajcosÖ-f s 2 («„cos no + ßnsiii«&)] 

y = a fcsin 0 -j- s 2 (— a„ sin «0 -f ,3„ cos nö)] 
n—1 J 

(2.18) 

?D-H?-23-367-69 .10 



i 

Here a and b are semi-axes of an ellipse, c ■ b/a. Function *,, 

represented in the form of series (2.9), will have the form (2.12) 

only when the following expression is the argument of function f Ik" 

l + c. . 1 — e   I  , . (\ +cr , i-e i \ 
- T-* + T T + • pr * + "2" X) (2.19) 

The problem is reduced to a determination of the pressure 

distribution in an anisotropic plate with an elliptical opening 

(with semi-axes 1 and c), the solution of which is known. 

3.  Coefficients of boundary values .for functions $, and 9^  for 

a plate weakened by an opening with four axes of symmetry. Let us 

examine an infinite anisotropic plate with an opening whose contour 

is determined by equation 

x = a (cos 0 + e cos 3&) 

y «= a (sin d — 3 sin 3d) (3.1) 

<r 

^ 

Y» 

-**> 

^^^9* 

Fig. 2. 

n 

-*-x 

Here e is the small parameter (in any case |e| < ■=■). 

The opening is a figure with four axes of symmetry; when e is 

positive it is located, with respect to the coordinate system, as 
1 e| - g or in Fig. 1, and when negative as in Fig. 2. When 

this figure will have the shape of a square with rounded corners 

and slightly curved sides.1 In this case 

«>-* 

Solutions to certain problems concerning the elastic equilibrium 
of an isotropic plate with an opening bounded by a contour such as 
(3.1) can be found in the work of M. I. Nayman [3] and in the book 
of G. N. Savin [4]. 
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?(C) = f,  «(0-«(: + ■£■) (?.2) 

Owing to the simplicity of function "tf>, it is easy to set up her-e 

the structure of boundary conditions of products 

\n »•«) ■a-Ct + W/iV (3.3) 

in the left sides of conditions (2.15) for any n and k and determine 

all coefficients at various powers of a  depending on coefficients 
Akm of the sarae function f]u  Csee (2*16) and (2.17)].  Formulas 
for coefficients of expression (3.3) are necessary when we determine 

the first, second, and third approximations (and also higher 

approximations which we are not considering in this work). 

The boundary value of the derivative of the n-th order of 

function f,, is derived on the basis of the boundary value of n — its 

first derivative according to formula 

M <"»." L+vu*JS±I_j  f, us 

or 

C'-l) 

t*    nr v ■ a* ■ a*  ' J (3.5) 

Assuming n = 1 and using the first expression (2.17), we find 

f-,/, and then based on the first derivative we find the second; 

based on the second, the third; etc. Multiplying the derivatives 

by the corresponding powers <j> + A,^-, we arrive at the conclusion 

that the product (3.3) has the following structure 

an -1 

■^rU +'•!?; lu ^"~,\\^r + Ai=*] M = 2J A-m« + 2J -4*"»0        (3.6) 

5TD-H7-23-367-69 12 



mtwmmmiwKiamif 

,n ,n 
Formulas for coefficients A.  and A.   will be more complex 

the larger m is and the superscript n which indicates the order of 

the derivative. If we make the stipulation, then they can all be 

written' in the form of one 

Akm" — £ *Ut m+jn+j-ai£iBi
n('-l) 

i-1 
(3.7) 

Here under the summation sign A indicates coefficients of 

function flk, while g ,  is an integral polynomial to the power 

i + n - 1 relative to A,, having the form1 

X {(ro-j-2n + 2 — i)(m + 2/» + 3 — /)...(« + 3n—i)»(« + !)... 

... (i + »—2) V + n (m + 2n—1 — i) (m + 2»—/)... 

... (m + 3» — 3 — i)(i — 3)(i —2)... (i + «—5) Vn~* + 

+ ( 2 J (ro+2«—4—i) (/»+2«—3—i)... (/n+3«-6-/) (i-6) (i-5)... 

...(/ + n—8) V*"* + ... + (")(m — n-r8— t)(m — n + 9 —z)... 

...(» + 6—Q (i — 3« + 6)(<—3« + 7)... (*—2« + 4)XX« + 

-t-n(ffi — n + 5—/)(/» — «-r6 —1)...(« + 3 —i)(/—3n + 3) x 

X (: — 3n + 4).. ■ (i — 2n + i)V + (*—» +2—i)(m—»+3— t) ... 

... (m — i) (/ — 3n) (i1— 3« + 1)... (j — 2a — 2) 

(3.8) 

In order to determine A,   with these formulas, at the given 

values for n, k, and m, after substituting these values into (3.7) 

and (3.8) we must discard all A with the second subscript negative 

and all terms with negative powers of A,.  The formulas are also 

valid for determining coefficients at positive powers of o (m must 

be replaced in them by the quantity -m). 

Specifically, for coefficients which correspond to derivatives 

of the first, second, and third orders (n = 1, 2, 3) we derive from 

(3.7)-(3.8): 

4L - — S A*< *+«-»< ('" + 4~2<) ^"4 (V + J) (3.9) 

i/n. 4(2)  and others  are bi.aomial coefficients, 

3TD-HT-23-367-6S 13 
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X [(/« + 6—i) iV + 2 (/« + 3—/) (1 — 3) X,« + (» - 0 (i - 6)J 
(3.10) 

.4L = - -~ 2 A m+»-*i (m + 8 - 20 >./->• X 
i-1 

x [{»,-f 8-j)(/rt+9—i)/(i'+l) V«+3(ro+5—i)(m+6—i) (i—3) (/—2) V• +    (3.11) 

+3 (,„+2-0 (m+3-0 (t-6) (i-5) /.x«+(*«-l-~0 (m-i) (»-9) (i-8)] (3.11) 

Coefficients ß£ are found by the same formulas (5.7)-(3.11) 

in which we must substitute B instead of A and A« instead of A,. 

Formulas similar to these are also easy to derive for an 

opening of another shape in which the contour is given by equation 

x = a(cos0 + scos20),  y = a (sin 0 — e sin 20) (3.12) 

T-'*-th the proper selection of e the opening will differ only 

slightly from an equilateral triangle with rounded corners, but we 

shall not consider this case here.1 

4, Approximate solution for an anisetropic plate weakened by 

an opening with four axes of symmetry, with an arbitrary distribution 

of forces along the contour. Let us find an approximate solution 

to the problem concerning the elastic equilibrium of an anisotropic 

plate with the opening whose contour is given by equation (3.1). 

Let internal forces X and Y be distributed arbitrarily along 

the edge of the opening, but their principal vector be equal to 

zero. 

Prom the beginning let us limit ourselves to the second 

approximation, discarding the highest powers of e in expression (2.9) 

beginning with the third.  Then 

Solutions to problems concerning stress distribution in an 
Isotropie plate with such an opening can be found in references 

C3, <U. 
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0, = <I>Jfl + 64'u + e8*!,,       4>a =» <Dae + tVn + «»OJJ (4.1) 

Boundary conditions for functions independent of e are written 

in the following manner [see (1.16) and (2.14)]: 

*i* + #2* + $i* + #»* *» ak0 + 2 (atn, cm -f *km o-">) 
■nail 

1*1*1* + Hlhk + M>,* + M>1* - ?*o + 2 (?*»'m + F*m«-m) 
(4.2) 

(* = 0,1,2) 

Using the formulas from the preceding paragraph, we conclude 

that functions $lk and $2k will have the following form on the 

contour of the opening: 

00 CO 

*10 - ^00 +   2 ^0m°-m. ^20 - #00 +  2 Am»'"'1 ( i|. 3) 
m—i m-l 

m-l 
CO 

#21 = — Al V — 25oaA2 + B„ +   2 (Am + BU 0~m 

m-l 

(4.4) 

«« - Aoih2*3 + ^«V»* + [Mnl^ + 64M—AM o + 

+ 84oaV + 10/W-i8 — 2A12).1 + A20+ 2 (^«m + Aw + ^o"-) °~" 
m-l 

#22 = AttV«* + 3£oaA3 V -f (pButf + 65o3>.22 — #11*2) • +     ■     ' 

+ 8503X3
3 -{- 10ß04Ä3* - 2B13k2 TA,T S (Am + B\m + B%m) cr" 

•m—1 

(4.5) 

Satisfying conditions (4.2) corresponding to k = 0, we derive 

equations: 

•"om + Bom — «om, Pi^om + f*a5om — ft). 

(and an analogous system for conjugates An and 3r ). Hence uni     um 

i^l — **« 
5, Dm 

*i — H» 

(4.6) 

(4.7) 
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Substituting boundary values    <&,. and $,2 and conjugate 

functions into conditions (4.2) for k = 1 and comparing the 

coefficients at identical powers of a  in the left and right sides, 

we derive the following system of equations: 

(An + Al
01) + (3U + Blx) - «n + 4»XX + Bj» 

Hi (An + Alx) + Ha (Bn + Ail) «?u + Ä>iJ^i + 5»i*»*« 
(4.8) 

Mlm + Alm) + (Z?lM + tfjm) «älm 

Hl (^im + Alm) + |ia (5lm + Blm) ==Jlm ,. 
(w-2,3,4. ...) (4.9) 

In solving them we find: 

.        ,    il               3u~ Higii i AIM foi " Mi) + ^oi*. ((ia —H») 
1          W                ft — M» V-i — V-t 

ß ,    ß\    _ £ll  — Ml°-ll ,        -'«I *■! ft^3   t^.) -^ -Q»!^» (t*1. ~r Ml) 
111                Mi — Mi ' Hi — Mi 

(4.10) 

,.                 ,1     _         V" Mä», 
' ■"• 1 »»I T "Wn — „    ,, 

Mi —Mi 

., ,     i»l     _ n m       'xlgl i 
'•»Jm T *»i>m  

1*1 — M 

(«-2,3,1....) (4.11) 

Coefficients A,  and B,  together with AQm and BQm determine 

the solution to the problem in the first approximation. 

Substituting the boundary values of $,2 and $22 into conditions 

(4.2), corresponding to k = 2, and comparing the coefficients at 

identical powers of c, we derive systems of equations somewhat 

more complex than the preceding ones.  Without writing them out, 

we shall introduce the final results: 

j A!    I    A*        Vn — H»»»    i   A^i <Jh — Hi) ± J*n*» <M» — Mr) 
81 "   '      w Mi" Mi Mi —Mi 

  o •4»t*.) ^Mi — M-) -1- flu*«1 <M' — M») ß ^'M*I'      I — M«) ± BgV (Mi — M») 
M»- Mi Mi —M. 

(4.12) 

^M + A\% + 4a - ggTJSJg - 3 A>r''(|X'" "a) + ""^'(1X' " **) ,u   „. 
Mi —Mi Mi ~Mi V.xj; 
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yew-us* *&agg1im   "■■•■~!mpjm'&WJ^*wwmumL><.f-<**ixmx<.**e>---^*">* 

A„ + Au + An~ ——  (4.14) 

Am+A^+J^-teZSa.    („,„4.5.6,...) (4#15) 

In accordance with the derived formulas, the boundary values 

of functions <J>,Q, $.., and <*> 2 are expressed through a in the 
following manner: 

OO      — — 

jr. V    ™>m ^3*1)1»»     _m     .     /* 
*»- L   fa,fa   

a ra + c.o (4.16) 

fl^- S SaZMg.-M + :^fc-i^-y £.-*> g-i^4M^ + Cu        (4.17) 
rTTi       **' — ™ ■ . 

mti      «*» — »*- 
,    M„X, -3/U,X,'- 6>IMV) (JX, - p, )M- <B„X, - 3/?», X.»- 6j?„X,') fc,- |x.)    ... 

T 3 — 
1*1—i*l _ 

 2 ^»Ai* (Hi — H») + A»V (n, — [*,) g-< ^loA,» (n, — t*>) + flwfc' (JX, — |i.) 3-, , 
l*i — I*« 1*1 —f*J 

+ (3<V>i3 + Bil^x*—iiuX,) o + 3^*0* + iloiVo» + Cw 

(4.18) 

We take the abbreviated designations C,0, C,,, and C-.?  for 
constant components which do not affect stress distribution. 

The boundary values of functions $20, $21, and $?2 are obtained 

from (4.l6)-(4.18) by simple transposition:  it is necessary to 

insert B, A, Up, p,, A2, A, in the written formulas instead of A, B, 

^i> I*?» *1» ^2*  To ca-lcul£te stresses in the second approximation 
clear expressions for A,-, and B-,. are required; let us introduce 

the first of them: 

/ln  (x, - {i, '      y^Vi r "" + dyl**i      (4.19/ 

If it is necessary to determine stresses not only near the 

edge of the opening but also at ccher points on the plate, then we 

must find coefficients A.  and B  of functions f,, and f„,.  Knowing 

expressions (4.7), (4.I0)-(4.15), we can easily do this by using 

(3.9)-(3.11) [or, in general, (3.7)]. 
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For the third approximation we must keep the third power of 

e in (2.9) and find $^  and $2^.  While omitting the operations, 

let us introduce the boundary value of *._ (the value of $?, is 

obtained by transposition): 

+ 1&& — 3^urx
3 — G^W + 2üZülX~s + 45 JMr^ + 35JoiTi») (^ — ft) +■ 

4- (SA—SZF,ä«— 6513x3*+2o^9Ir26+'«5ir0Sr2* + 

.+35 2JMra
s) & - h>] -^-+K- 3 i,Ä' +2oiMv+201M!,3) (h~h)+ 

+ (- 3£12^ + 20ßosX2« + 2ö7fMI») (ft - ft)] ~J^ -r (4.20) 

+ [(- WS + 6ToA« +101^») (^ - ft) + 

-r (- 5ur2* + 6Ä„X,« + I0503la
3) (ft - ft)} -aJ-f-- -I- 

ft—n» ' ft—in 
+ (— -Vi + 3^i A» + 6A13V — 20^0,).^ — 45yl03V — 35/1«).!8) a + 

+ (34„V - 20/1,,,).!* — 20itMV) °s + Mi A* ~ 6^oi'-i4 - 10AA3) o3 — 

— AAfM* — A07)n*o* + C13 

Here we add expressions for certain coefficients which are 

necessary for calculating stresses near the edge of the opening: 

Au » ?»»-_* "'* 4- 2iiMX1» + 4-4^ 
H« — Hj 

Au-^^i + ii01X1
8 + 3ilo3V + 5^oA ' 

r1» — (*» 

,<     _ 3ii — Ht*»    1   ^'n*i (Hi — H«) + gu*j (^ — H») 
^1 ~ H« ft — H» 

j*,— nt "' ft —ft " ' (4. 22J 

Formulas for coefficients 312, B^,  and B21 are analogous; we 

derive them from (4.2i)-(4.22) by transposing letters and subscripts. 

Stress components are expressed through derivatives of functions 

♦ 1 and <2>0 with respect to their arguments.  Assuming independent 

variables p and o = e  , we obtain 
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4>.' iz.\. !ÜÜ „ (»y a?) rfp-KWj/<?<>)*>  
* {i)     dii     I»«' (0 + o-s xs«' $j rfP + [<»' (C)- «-• x. i' (C)j prf« (4.23) 

(f-l, 2) 

Using equations (2.8), ö*./öp can be expressed by Si./6a  and 

vice versa. After this substitution, instead of (4.23) we obtain 

two equivalent formulas with which we can find the derivative of 

4>!(z.) at point (p, a): 

50). / do 
«i'W-  '','-,,,- (1.24) 

p ' öOj / da 

""'"■>- «B-«^* ff ("-25) 

When the "small parameter method" is used, we derive approximate 

expressions for functions $, and *j while their precise values remain 

unknown. For determining the approximate values of the derivatives 

$, and $2 we use formulas (4.24) and (4.25) where, instead of *, and 

$2, we substitute their approximate values. 

The formula which determines approximate values for derivatives 

on the contour is derived in this case from (4.25) where it is 

necessary to assume p = 1 and, instead of $., to substitute the 

boundary values indicated in this paragraph for the functions 

(approximate). For points on the contour we have 

■Wto^f [*-£ + *(-'^ + 38°2)] (i4'26) 

Other quantities which enter the formula for stresses ofl on the 

contour [see (1.14)] have the form: 

dx=*—a (sin & + 3s sin 3&) db 

dy=*     a(cosö —3scos30)rf& (4.27) 

ds* ■» a2(l -f 9s?—6e cos40) ctö» 

For an orthotropic plate all formulas are somewhat simplified. 

If the opening is cut so that its axes of symmetry, taken as x and 



y, are normal to the planes of elastic symmetry, then, depending 

upon the elastic constants, three cases of complex parameters 

u, and Up are possible: 

I. >v 
II. IV 

VI. iv 

»ft (*■»**, £ = — ß*. j*a =- — 6t_        (ß>o, J>0) 

Next we examine in more detail two cases of elastic equilibrium 

in an orthotropic plate with an opening — expansion and bending by 

moments acting in the middle plane. 

5. Expansion of an orthotropic plate with an opening. Let us 

examine an infinite orthotropic plate with an opening whose contour 

is given by equation (3.1) (the opening is cut so that the x and 

y axes are normal to the planes of elastic symmetry). Lee the 

edge of the opening be free of internal forces, and at a great 

distance from it (in theory - at infinity) there are tensions 

distri uted uniformly with intensity p parallel to the axis of 

symmetry which has been taken as the x axis. 

1 n 

jp     0 

^%£ 

JU 

Pig.   3. 

T 

i» 

-  irr» y, 

-       % 'wmmmr   - zz 

Pig.   4. 

% 
8,  Cjfr 

j-t-*- 

The location of the opening with respect to the axes and the 

forces is shown in Fig. 3 for e > 0 and in Fig. k  for e < 0. 

It is sufficient to examine only case I where the complex 

parameters are purely imaginary; then 

l-p 
1 ""i + y A» = 

1—S 
1 +8 (5.1) 
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are real numbers, not exceeding unity in absolute magnitude. The 

formulas for the other cases II and III we obtain from the formulas 

derived for case I, assuming that 6 = B  everywhere in them or 

(in case III) replacing 8 and 6 by the quantities 3 + ai and ß - oi. 

Stress distribution in a solid plate being stretched by forces 

p will be: 

»X =/». = 0 ,5.2) 

The following forces act on the lines corresponding to the 

contour of the opening: 

AY = /> cos(II,*)--/>!&, yn« = o (5.3) 

Stress distribution In a plate with an opening is found by 

applying the solution/ to (5.2) and the solution for a case of 

internal forces acting on the edge of tne opening and equal to 

An = — Afl ,    X» =» 0 (5.M 

Functions <S>, and $2 which correspond to load (5.4) satisfy 

conditions (1.16) in which 

jj Yt.ds - 0 
0 

s 

- J A'-«k«-jBa(sinö-s8jn3&y-^[o — i- + tf—o» + 1)1 (5.5) 

Consequently, in the f rmulas of the preceding paragraph which 

were found for the arbitrary distribution of forces along the edge 

of the opening, we should assume 

hi = ~-jPai, ha^-jPÜ (5.6) 

and the remaining $,  and all a,  are equal to zero. 
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The boundary values for the functions which make up the 

second approximation, on the basis of (4.l6)-(4.l8} and (4.7), (4.19), 

will have the form: 

VÄtM^ + ^ + W + 'fv-V-^-.^ + ft 
(5.7) 

Here C, and C~ are constant components which do not affect 
X       c. 

stress distribution, while h, , k,, m,,  and n,   are coefficients 
expressed by  3  and 6 in the following manner: 

*i - WTWUTsf [~ 3 -1"72+ 1S3 ~ 53' +13'38 _ 95a + S*" 193'S" 
•    — 5938* + Z3 + 35 (3,3' - 31,32 - S8) + 33»o» (3 + 58) + 335»J 

1 
*!- (1 + P)' (1 + 8) .-«■ [-1 + 2(1 - .35) (3 + 35) - 8» + 438 - 5* - 3- 5s] 

/n, = 1 
(1 T?)(1T S) rrxT(i-?-38-j») 

* - —3FTiVS) <3 ~ '<3 - S + P - 835 + 3'5) 

(5.8) 

The coefficients h~,  k„, m2, and n~ are obtained from (5.8) 

by transposition of the quantities B and 6. On  the contour of the 

opening we find the following (approximate) expression for the 

derivative 

*,'- 
2(»-8) (5.9) 

and an analogous expression for $p. 

We show only the formula for stresses afl on the edge of the 

opening [see (1.14)] and at specific points on the contour — at 

"corners" and on the middles of the "sides" (A, A,, B, B,, C, C,, 

C2>  C3 on Figs. 3 and 4). 
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Let us introduce the further designations: 

A — cos ö — 3s cos 30, '      7/ = sin 0 + 3e sin 3» 

C* = 4* -r 1? =* i + 9ss — 6s COS 4» 

/)* = — ,1*38 + A'B* (1 — 253 — .3*8») + 5* (2 — 68 — 8»~ 8«) 

£ « ?a (V* + M (Ä* + 84/ls) - fe it« + (23,, + 3M) ,!•*» + 6U B* 

(5.10) 

*      (1 + ?)»(i + 8)» 

A = 
(ITW (! + •).• / = (l + W(l+8) (1-3-8-38) 

8 »» = (J+p,,(1+>)»[(? + S)(l + 3S)-3(l + 3»8») + 103S) 

« —■ (1 -r ß;' (1 -r 8) \ K? + 8) (7 —19.38 -r 33'8S) — 3 + 1738 — 273*8* + 3*8' + 
+ (3*-{-8*)(338-5) + 3» + 8»] 

(5.11) 

Stress afl on the edge of the opening is determined in the second 

approximation by the formula 

"• - P Jr + £§> iA£)i cos ö + BC* & +s)sin ÖJ ~ 
,/»ßii — e£-^[^*A35(34-8)cos& + 3i4Z)«cos3a+Z?C«(?+8)(/sin{> + 3sin30)]+ (5.12) 

+ e8 -Jü {? + 8) C*U— m cos» + 3$ cos 30) 38/1 + (-«sin ö +.3A sin 3ö)ÖJ 

At points A and A, at the ends of the opening's diameter, 

parallel to the forces (Pigs. 3 and 4), which correspond to 6 = 0 and 

6 = ir, we obtain 

p     i NATT5pHl+«[3-(? + 8)*] + «»(P + a)(3g-«)} (5.13) 

At points B and B, at the ends of the diameter perpendicular 

to the forces (9 = (l/2)ir, 9 = (3/2)ir), we shall have the following 

expression 

(«»)* = T~3i V + 3 + fi + £K.3 + 8)(5 -k) - 3] -6»(S + S)(n+3A)} 

At points C, C,, C2, and C- at the ends of the diameters, 

which are directed at an angle of 45° to the forces, we shall have 

(5.14) 
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- (.3 + S) (3 + *?5 + 0] + es {? + 2) [3(A - $8) - m38 - »]} /o   .   >\ /o   i   La»   i   m    ,   -s/o   i   >\ro/f.        ,.c>\        _0?       -.11 O •-O ^ 

If we desire to calculate the stresses in the third approximation, 
i.e., to preserve the third power of e, then to stress aQ, determined 
according to formula (5.12), we must add the quantity A^a0 - the 
correction for the third approximation. Without deriving the forjrnir'a 
for this correction, let us state 

Aa5» - - s3^P- (? + 8) O (AN, 38 + BMt) ( 5. X6 ) 

Here the designations are: 

Mx — ax sin Ö + 3a3 sir. 3& + 5as sin 5& 

Nl = < cos Ö + 3a3' cos 3» + W «>s 5» (5.17) 

.fll = ± {12A — 2m38 (« + A) + 2« (h — l) + 3A (/' + k*fi) + 

+ 3gk^l (3 + S) -f 11/ (/** - g*fo) - H«*8S [2A + »(3 + 3)]} 

aa ='JL[/,Z +gA-38-j- 5(,V-£*3o)], «s = -i(AZ_g*88) 

«/ = T {12g+2m[h-l + ft(l - So) +g(3+8)] + 2nfe-k) +.3g(J'+A'38) - (5.18) 

- 3&s{8 +'6)fA -j-$(3 + 8)) + lU-(//»-^S8) + li?[/+A(3+8)] [2A+g(3 + 8)J 

«•' = T (*' +//A' + (5ff - *) PA + ff (3 + 8)]} 

«,'-■£{** + *[/ + *(? + *)]} 

Values of A^Og at points A, A1, B, B.^ C, C1, C2, and C_ 
(Figs. 3 and 4) are equal to: 

(A,»»)A /»y~; *jjp («,' + 3«,' + 5a,')  . (5.19) 

(A,3»)s - -/> —^ (? + 8) fa—3a, + 5as) (5.20) 

M*-.-Pi ~Ci +
2ff)(t + 8») [«i+3fl,-5flt+B8(a1'-3a8

>-5a;)]      (5.21) 

The reduced formulas containing letter designations do not 
allow us to judge at what points on the contour pressure is highest. 
However, when e > 0, it is quite probable that oQ achieves its 
highest values at points B and B, [although not excluding the 
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possibility that at certain values for the elastic constants the 

stress at points A and A,, found by formulas (5.13) and (5.19), 

will appear to be greater in absolute magnitude than the stress on 

the ends of the diameter at points B and B^. 

For an Isotropie plate 3=6=1 

The stress at points A and A, of an Isotropie plate is determined 

in the third approximation according to formula (which is derived 

from (5.13) and (5.19)) 

K)A=r^(-l+e-2e»-2e») (5.22) 

The exact value of stress at these points is equal to 

(«*), 
p     — l+2i — 3c' 

i —a«   I— t (5.23) 

For the stress at points B and B, we obtain from (5.1*0 and 

(5.19) the approximate formula 

('*)fl = r^(3+5s+268+2s3) (5.24) 

The precise formula has  the form 

,    , /'     3 + 2e — 3e* 
(*•)* - r=Te —T=7— (5.25) 

Expressions (5.22) and (5.24) are obtained from (5.23) and (5.25), 

respectively, if in them quantity 1:(1 - e) is expanded in a power 

series and the highest powers of e, beginning with the fourth, are 

eliminated after multiplication. 
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At points J, C,, Cp, and C~ of an Isotropie plate the 

approximate formula for stresses coincides with the precise 

formula1 

i—3s 
(**)c 1+3« (5.26) 

We note that for an isotropic plate the errors in approximate 

formulas (5.22) and (5.24) are very small even when e is not very 

small as compared with unity. 

If we keep only the first and second powers of e in the 

brackets, i.e., take the second approximation, then error in stresses 

at points A and B when |ej _< g- does not exceed 0.5? [as compared 

with quantities found using the precise formulas (5.23) and (5.25)]. 

Even for |ej = -r the errors in formulas (5.22) and (5.24), in 
3 

which e is discarded, are less than 12.5?; naturally, they will 

be even smaller if we examine the third approximation. 

Let us introduce the results of calculations for an orthotropic 

plate whose principal elastic constants for directions parallel 

to the middle plane have the following values: Young's modulus — 

1.2 x io5 kg cm"2 and 0.6 x io5 kg c:.;~2, Poisson brackets - 0.071 and 

0.036, and shear modulus - 0.07 x 10"' kg/cm . Such elastic 

constants (average in thickness) are obtained for one type of 

plywood. If the directions of the coordinate axes coincide with 

the principal directions of elasticity then the complex parameters 

are purely imaginary: 

i^i = ß'. ix2. ■ Si. 

We should distinguish the two basic cases; 

*See reference [3], page 54.  All three formulas — (5.23), 
(5.25), and '5.26) - are derived from formula (80) in this work, 
found by the nethoa of N. I. Muskhelishvili, at particular values of 
6 if we assume there that R = 0, h = -p/A, a = 0, m = e. 

2 <; See [2], page 133. 
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1) a plate is stretched, as shown in Figs. 3 and 4, in direction 

x for which the Young's modulus is greatest (1.2 x 10O, 6 ■ 4.11, 
6 - 0.343; 

2) a plate is stretched in direction x for which the Young's 

modulus is least (0.6 x 105), ß » 0.243, 6 * 2.91. 

The formula for stress aQ at a given fixed point on the contour 

is written in the form 

°Q  * PK (5.27) 

where K is a dimensionless coefficient depending on 3, 6, and e-. 

Table 1. Values of coefficients K x i(T for certain 
e. Case 1. 

1P- 
_ 

|  . 
Point« ssr «»0 • -" I -1  -L I » I -_J- _ _ i 

100 1UO 10 »  |   o 10» ii« 10 » 6 *        * 

0) -71 -73 -SI - 971 -101 -132 —('9 -63 -57 —55 ~50 
A 
*-0 (2) —71 -73 -82 -100 -105 —142 —69 -63 —58 —57 -54 

(3) -71 -73 -82 -100 —105 —143 -69 -63 -58 -57 -54 

B 0) «5 579 740 1017 1090 1646 513 402 291 270 178 
.     » (2) 545 579 737 1004 1079 1595 513 400 ■ 284 201 161 
»=T (3) 545 579 737 1007 1082 1612 513 399 283 260 156 

c (i) 40 38 30 22 20 14 43 55 75 81 . 121 

-f (2) 40 38 30 23 22 16 43 55 76 82 126 
(3) 40 38 30 22 21 15 43 55 77 83 129 

Table 2. Values of coefficients K x io2 for certain 
e.  Case 2. 

Ap- 
Points prox- .-0 

I 5 -i l 1 5 1 i l 
IBA- 100 11» 1U 9 6 100 100 10 9 0 

.tion . 

0) -141 -145 -163 -19-'. —203 —264 —13S -125 -113 —111 -101 
A 
»-0 

(2) -141 —145 —163 -195 -205 —270 -138 —126 -114 —112 -103 
(3) -141 —145 -163 -196 -206 -278 —138 -126 -113 —HI —100 

B (1) 415 439 548 739 792 1170 393 317 241 227 164 
-  * (2) 415 439 547 733 . 785 1146 393 316 238 223 156 
*-T (3) 415 439 547 733 786 1151 393 316 238 222 155 

C (1) 69 65 54 42 40 31 72 89 118 126 183 

-T 
(2) 69 65 Si 43 41 32 72 ■ 89 119 127 187 
(3) 69 65 54 43 41 31 72 89 119 128 189 

Tables 1 and 2 give the numerical values for coefficient K 

found for values of |e| = 0, 0.01, 0.05, 0.1, 1/9, 1/6 in the first 

(1), second (2), and third (3) approximations for points A, B, and C 
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Eleven values of this parameter are taken In all — zero for a 

circular opening, five positive, and five negative. 

Two decimal places are preserved throughout the tables in the 

final numbers. The calculation of coefficients K with greater 

accuracy is hardly sensible since the numerical values of ß and ö, 

indicated for cases 1 and 2, are approximate — they are given with 

three significant digits [let us remember that ß and 6 are determined 

based on the prescribed elastic constants from equation (1.3) where 

B16 s ß26 s °L 

As seen from the tables, for |e| £ 1/9 the third approximatior3, 

within the accuracy adopted, differ little or not at all from the 

second approximations. While calculating stresses for such e 

according to formulas (5.13)-(5.15), we shall venture to obtain 

an error for coefficient K (absolute) which does not exceed 0.03, 

and for smaller e in a number of cases only the first approximation 

is necessary. For e = ±1/6 the difference between the third and 

secona approximation is more noticeable; however, in these cases, 

it is comparatively small. 

Prom these same tables It is apparent that at positive e (Fig. 3) 

the stress at point B increases with an increase in e (this is 

understandable since the curvature of the contour at point B increases) 

Simultaneously, the stress at point A increases in absolute magnitude, 

while the stress at point C decreases. At negative e (Fig. 4) the 

opposite pattern is observed: with an Increase in |e| the stresses 

at points 3 and A drop in absolute magnitude, while at point C they 

rise. When e > 0 the greatest stress for the entire plate is found 

at point 3 (and point B,). For openings corresponding to negative 

e the position of the point (in the first quadrant), where the 

stress a»  reaches its highest value, is determined by the quantity 

e; with an increase in |e| this point moves from B in a direction 

toward C. 

We shall write out for a comparison the quanties of stress at 

points A, B, C on the examined anisotropic and Isotropie plates 
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with an opening which is characterized by parameter e = ±1/9 

(coefficients K for an anisotropic plate are taken from Table 1 and 

Table 2 in the third approximation). 

a)c-»/. 

Anisotropic plate, case 1: 

(5.28) 

Anisotropie plate, case 2: 

<»»)A—2067». tya-IMp.    («,)0-<>■«/ (5.29) 

Isotropie plate: 

(«>)A=-1.38/,.  (a#)a-5.38p,  (<^)c-0.5/» 

6)«--V. 
(5.30) 

Anisotropic plate,  case 1: 

Kh —°-57*   {
%)B - 2-60 A   <ff»>c - O-83' (5.31) 

Anisotropic plate, case 2 

(0j)A —. 1.H ;>,  (•, )B - 2.22 /»,  (o,)c = 1.28 /> (5.32) 

Isotropie plate; 

(os)A=-0.S5/>,  (<^)ß«1.85y>,  (o,)c = 2;> (5.33) 

When comparing the.se data, we note that at point 3 of the 

examined anisotropic plate the stress is greater than at the 

corresponding point on the isotropic plate; on the other hand, the 

presence of anisotropy reduces the stress at point C.  Generally 

the stress a„ in the anisotropic plate changes along the contour 
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of the opening more sharply than the stress in the isotropic plate, 

forming "peaks" at certain points (especially noticeable at point 3 

for case 1 when e = 1/9). 

6. The  bending of an orthotropic plate with an opening by 

.•nor.er.ts which act in its plane. Let a rectangular orthotropic plate 

be weakened in the center by an opening with a contour of type (3-D; 

the dimensions of the opening are small in comparison with the 

dimensions of the plate. It is assumed that the planes of elastic 

symmetry are parallel to the surfaces of the plate and the opening 

is cut so that its two x and y axes of symmetry are'normal to the 

planes of elastic symmetry. Moments M acting in the middle plane are 

applied to the two opposite sides and the edge of the opening is not 

loaded. 

Fig.  5. 

|f#ft 
%J,  0 

mw<im. 
8,  <J 

rr 
M 

Pig.  6. 

When e > 0 we have the pattern shown in Fig. 5;  the case of 

£ < 0 corresponds to Fig. 6. 

In a plate without an opening, which can be bent by the moments 

(pure bend), stresses are determined according to the law: 

M 
1 '•» -xv (6.1) 

Here J is the cress-sectional moment of inertia. 

/he following forces act in a line whose equation is (3.1) 

M A'„° = '-j-ycos (n, x) — M      dy 
IV = 0 (6.2) 
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We derive an approximate solution for a plate with an opening 

(which does not satisfy the strict conditions on its sides) by 

adding to stresses (6.1) the stresses in an infinite plate with an 

opening along whose edge are distributed forces 

Y Y ° y»=o (6.3) 

The integrals in the right side of conditions (1.16), in this 

case, will be 

0 

(6.4) 

Consequently, 

?os ~ H7 ' •J" 17"' 
(6.5) 

The remaining ß,  and all a,  are equal to zero. °    km        Km     ^ 

When we substitute (6.5) into formulas (4.l6)-(4.l8), we obtain 

the boundary values for functions of complex variables which 

determine the second approximation 

*. - gTT^TSj [-? T * I(-? -r ST)~« (*»«■ + -,- -r -,Jj -r Cx 
i6.6) 

Here C, and C2 are constant components which do not affect 

stress distribution; k, is determined by the second formula (5.8) and 

k2 is obtained from k- by the transposition of ß and 6. 
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The approximate expression of derivative *« on the contour of 

the opening has the following form [see (4.26)3: 

,r, * _  'V*'  "" + 2c' (g" ~ 2g~*> ± 3s' t— Vg ± *■«" jt £*< . //- 

The boundary value of $„ is found according to an analogous 

formula. 

Using the shortened designations (5.10) and (5.11), we shall 

write a formula for stress aQ near the edge of the opening in the 

following manner: 

c» = IT £? (s«n 0 — e sin 3ft) 4- -g£ A. [— /?£« (3+o) cos 2&+AD*sin2ft] + 

+ *¥Z.2£-[—BC (ß+S) (cos2ft—2cos4ft) +AD* (sin2ft-2sin4ft)]+ . ,   _. 
( 0 . o) 

+ e* ~ ^ [BC* (3 + S) (A cos 20 — cos 6ft) — 

— AC*g (.3 + S) 3osin 2ft + AD* sin 6ftJ. 

At points A and A, (Figs. 5 and 6) stress is zero. At point ß 

(c»)« = .7^{1 + ß4i+6f3(^)-2^3£2[341(1-/i)-1]>.      (6.9) 

Stress at the opposite point B, is found to be the same in 

absolute value but has the opposite sign. 

At points C and C, 

(^-7(^(TW^^-^'+28ll~^-2(? + 8)1+      (6.10) 
+ 3ss[33- i-tf8 (?■+«)]}. 

At points Cp and G_ we obtain the same value but the opposite 

sign. 
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Let us point out, without derivation, the error which must 

be added to the stress a„ [formula (6.8)] in order to obtain the 

third approximation: 

^^-^h^JLc-(AM& + DNJ. (6.11) 

Here the designations are: 

i\l. = a3 sin 20 -j- 2«< sin 4* 

Nt = a3' cos 20 + 2a/ cos 40 
(6.12) 

a./ = 1 [- G/i + 7 (As -tfffl], «/ = as . 
(6.13) 

At points B and C we obtain 

(AA)*-*7ifägff+ *)(«•'—20 

(A3
5*)c = —*' 

4 /2 AT«    & + * 
3-*yC -  e y (1 + gjjj (1 L. ^ (i + p} 

-(fl2So-2a4') 

(6.14) 

(6.15) 

(at points A and A, A-a« = 0). 

With positive e it is natural to expect that the stress which 

is highest in absolute magnitude is found at points B and B,. 

For an Isotropie plate A^Og = 0 at all points of the contour 

we have 

IMa 1  + 2s 
(5o)i3 = j  i — 3c' 

(6.16) 

(o»)c = — 
2 F 2 .V« 

J        1 -r 3s (6.17) 

These formulas for Isotropie material, found by the "small 

parameter method," are identical with the precise ones.1 

See [3J r o i     n a 3-o c 4, formula (80), where we must assume the 
following; ,1/ 

it — Ö,  -ft = u, .4 n — , a = 0, m = e,  0 = — Tt,   £> = — rt 
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Tables 3 and 4 give the results of calculating first (1), 

second (2), and third (3) approximations for the anisouropic 

(plywood) plate examined in Section 5- 

The formula for stress at a given point on the contour can be 

written as 
Ma 

(6.18) 

where K, is a dircensionless coefficient depending upon 3, <5, and e. 

The tables are compiled for the same values of e as were examined 

in Section 5 and their accuracy is the same.  Table 3 presents the 

nu\*,'rical values of coefficient K, for case 1 when the direction of 

the x-axis (Figs. 5 and 6) coincides with the direction for which 

the Young's modulus is greatest; Table 4 presents the same for case 2 

when  the direction of the x-axis coincides with the direction for 

which Young's modulus is the least. 

If we want to calculate coefficient X, with two decimal places, 

then for jej <  1/9 it is sufficient to take only the first 

approximation; the error which we obtain with this does not exceed 

0.02 in the worst case. Even for e = 1/6 the third approximation 

differs very little from the first and only for e = -1/6 in case 1 

does the difference become somewhat larger. 

Table 3.  Values of coefficients K±  x io' for certain 
e. Case  1. 

Points rr,vX   « = o     -1 ! _L    -L 
| Sma-  1            i     100  ;    loo   I    io 
It.on  i i ! L_ 

! w 323 3« | 
I   (2'. 323 3/,'i 

j   (S) 323 344 

iuo! 

446 i 623 j »73 
446 | 621 j 673 
446  622 I 672 

102/, 
1016 
1023 

302 
302 
302 

5 j 
looi 

i 

10 

i. 

_   L 
9! 

231 | 161 147 j 
231 ! 160 1/J6 

231 ! 
1 

159 145 

89 
86 
84 

(1) ~3 I -A j -S 
(2) ! —3i —.', j —8 
(3) | -3 -S 

-12 
-12 

—13 I —17 
—13 j -16 
-13 -17 

—2 
—2 
—2 

+4 
+4 

15 
15 
15 

IS 
18 
18 

3S 
39 
40 
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Table *i.     Values of coefficients X,  * 10    for 
certain e.    Case 2. 

PotaxsjP»"»*-; 
Ltion I 

■-• 1    "fflt        -ffl«        VT 
I i S I M       _lj       _l_ 

~ louj " loo: " lo j      5"] —   « 

With positive e the stress at point B grows, wnile with negative 

e it drops with an increase in JeJ. When e > 0 the stress at points 

B and B, is the greatest in absolute magnitude for the entire plate. 

In the case of negative e the point in the first quadrant where 

stress or reaches maximum shifts in direction from B toward C with 
6 

a growth in |e j. 

We shall write the numerical results for an anisotropic plate 

with an opening which corresponds to the values e «■ ±1/9, and for 
the same type of isotropic plate. 

a) «-»/. 

Anisotropic plate, case 1: 

Ma 
(VB = 6.72 —,   <°»)c — •0.13 

Ma 
(6.19) 

Anisotropie plate, case 2: 

(*#)«- 5.10~~,   (Vc—0.10-yi (6.20) 

Isotropie plate: 

Ma 
(^)B = 3.67-r,   (%)c 

6)    '•--»/. 

--0.24 
Ma 

(6.21) 

Anisotropie plate, case 1; 

WM*'        (%)c-0A8^1 (6.22) 
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Anisotropie plate,  case 2: 

(*«)«-uo-^r,     (O,,C«,O.M£I (6.23) 

Isotropie plate: 

ji/fl Ma 
(•♦)i,-1.17-yi.      (Vc-^7 (6.24) 

Just as in the case of expansion, the stress at point B of a 

given anisotropic plate is greater, and at point C is less in absolute 

magnitude than the stresses at corresponding points on an Isotropie 

plate. This is explained by the sharper increase in stress along 

the contour of the opening as compared with the Isotropie plate. 
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(U) The plane problem of the theory of elasticity for the aniso- 
tropic plate with an aperture is solved only in the case when 
the aperture has the shape of an ellipse or circle. All the 
other cases of openings of another shape, including those of 
great interest for practice, up to now have not been investigated. 
In this work the author offers an approximate method for the 
solution of the plane problem for the infinite anisotropic plate 
with an aperture resembling the circular. The method,based on 
the introduction of a small parameter (characterizing the devia- 
tion of the aperture from the circle), whose high degrees (beginn- 
ing, for instance, with the third or fourth) are rejected in the 
investigation process,, The problem is reduced to the well-known 
•problem of the equilibrium of the anisotropic plate with a circular 
aperture. The basic attention is given to the aperture, having 
four axes of symmetry (during the needed selection of the para- 
meter it will be little different from the square with rounded 
corners). For a plate with such an aperture are deducted approxi- 
mate solutions for the general case of load, as well as for two 
cases, when the plate is orthotropic and is deformed. Orig, art. 
has: 6 figures, K  tables, and 5 Slavic references. 


